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Divergence measure between chaotic attractors
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We propose a measure of divergence of probability distributions for quantifying the dissimilarity of two
chaotic attractors. This measure is defined in terms of a generalized entropy. We illustrate our procedure by
considering the effect of additive noise in the well known He´non attractor. Finally, we show how our approach
allows one to detect nonstationary events in a time series.
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Through the appropriate embedding procedures, stra
attractors can be numerically approximated by a large se
points, either from experimental time series~TS! or from
numerical simulation of chaotic systems. Advances in n
linear analysis of TS have made it possible to identify a
classify chaotic dynamical systems, determine if a signa
deterministic or not, and establish correlations where the
ditional linear analyses were not sensitive~see Ref.@1# for a
review!. However, there are many situations where we do
need a complete characterization of an attractor, but rath
quantitative way of comparing attractors. For instance,
cently several authors have proposed using some mea
of dissimilarity of attractors to analyze nonstationary sign
@2,3# and for TS classification@4#. In some situations it could
be important to quantify the difference of two attractors c
responding to slightly different parameters of a chaotic
namical system. The computation of the hierarchy of gen
alized dimensions does not help, because even if
dimensions of two fractal sets are equal, this does not g
antee that the two fractal objects are identical. Furtherm
for a reliable estimation of nonlinear dynamical measu
used to characterize chaotic dynamical systems, large q
tities of precise data are necessary to achieve accurate
scription of the small scale structure in different regions
the attractor and these structures are easily damage
noise.

In order to give a quantitative answer to these issue
number of dissimilarity measures have been proposed in
literature. Kantz@5# introduced a cross-correlation~CC! in-
tegral to evaluate the similarity of attractors. He found th
for small scales the decay rate of the CC is greater than
decay rate of the autocorrelation~AC!. Alternatively, Albano
et al. @6# use the Kolmogorov-Smirnov test for comparin
quantitatively two sets of AC integrals. More recent
Schreiber@3# proposed that the nonlinear cross-prediction
ror can be used for measuring the similarity of short
quences.

The quantitative comparison of attractors can be relev
in many different problems, such as numerical taxonomy
TS, to establish a criterion for stationarity, to study the n
merical convergence of chaotic solutions, to evaluate the
fect of nonlinear noise reduction of noisy chaotic attracto
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among other applications. For the above-mentioned purpo
we need a reliable way of comparing attractors rather t
their detailed characterization. In this Rapid Communicati
we propose a divergence measure based on a genera
entropy function for quantifying the similarity of attractor
The procedure introduced here takes advantage of coa
grained information without losing sensibility to high-ord
correlations in the data. We remark that it makes it poss
to compare attractors, even in some situations where
more commonly used nonlinear measures are not com
able.

From the information theory viewpoint, the amount
uncertainty of the probability distribution~PD!, pi , is de-
fined in a general way byH f@pi #52( i f @pi # @7#. There is
not a unique information measureH f . The more commonly
used information measure or entropy function was int
duced by Shannon and Weaver@8#, wheref (p)5p ln p. Gen-
eralized entropyf q has been postulated by Re´nyi @9# and
Havrda and Charva´t @10#. Rényi’s generalized entropy ha
been used to define a hierarchy of generalized dimens
@11#. Tsallis introduced the Havrda-Charva´t entropy function
to elaborate a nonextensive thermodynamics@12#. We have a
divergence measureD f(p: p̂) associated with an entrop
function f, between two PDpi and p̂i . A general divergence
measure form associated to thef-entropy was given by
Csiszár @13#,

D f~p: p̂!5(
i

S p̂i f F pi

p̂i
G1pi f F p̂i

pi
G D , ~1!

wheref is a convex function and one imposes the condit
f (1)50, which guaranteesD f(p:p)50. Rényi’s generalized
entropy does not satisfy convexity. Fortunately, Havrd
Charvát entropy function fulfills this property. For this rea
son we will work here with the Havrda-Charva´t entropy
function. From here on we shall refer to the generalized
vergence measure associated with the Havrda-Charva´t en-
tropy function, simply as theq-divergence, and will be de
noted byDq . If we replacef by the function corresponding
to the Shannon entropy, we obtain the well known Kullbac
Leibler distance@14#

D1~p: p̂!5(
i

S pi lnF pi

p̂i
G1 p̂i lnF p̂i

pi
G D . ~2!
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The functionf corresponding to the Havrda-Charva´t entropy
is given by f q(p)5(q21)21(pq2p). Then, the associate
q-divergence is given by

Dq~p: p̂!5~q21!21S (
i

pi
qp̂i

12q1(
i

p̂i
qpi

12q22D .

~3!

It is easy to show thatDq(p: p̂)→D1(p: p̂) whenq→1. The
q-divergence measure is positive definite, has been m
symmetric, and fulfillsDq(p:p)50. Also Dq(p: p̂) consid-
ered as a function ofpi andp̂i is convex. We remark thatDq
is semimetric, since it may not satisfy the triangular inequ
ity.

After these definitions, let us consider the divergence
tween two finite time series embedded inR d, X
5(x0 , . . . ,xN) and Y5(y0 , . . . ,yN). There are two well
known ways of estimating quantities~2! and~3! from X and
Y. The most straightforward, but also more expensive, is
use a box counting~BC! approach that counts the number
pointsni in the boxi. The probabilitiespi can be estimated
aspi5ni /N. On the other hand, a more efficient method
estimating Eqs.~2! and ~3! is by correlation sums@15#. In-
stead of taking a fixed mesh, one can calculate the proba
ity P(xj ,«) of finding a point within a sphere of radius«
centered atxj , with j 51, . . . ,M randomly chosen from the
trajectoryX. P(xj ,«) is estimated by counting the numbernj
of points falling in the sphere of radius« centered atxj ,

P~xj ,«!5N21(
i 51

N

Q~«2uxi2xj u! j 51, . . . ,M .

Using this definition, expressions~2! and~3! are replaced by

D1~p: p̂,«!5M 21S (
j 51

M

lnF (
i 51

N8

Q~«2uyi2xj u!

(
i 51

N8

Q~«2uxi2xj u!
G

1(
j 51

M

lnF (
i 51

N8

Q~«2uxi2yj u!

(
i 51

N8

Q~«2uyi2yj u!
G D , ~4!

Dq~p: p̂,«!5
M 21

~q21! S (
j 51

M S (
i 51

N8

Q~«2uyi2xj u!

(
i 51

N8

Q~«2uxi2xj u!
D q

1(
j 51

M S (
i 51

N8

Q~«2uxi2yj u!

(
i 51

N8

Q~«2uyi2yj u!
D q

22M D ,

~5!
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whereQ(x) is the step function which has the value 1 ifx
>0 and is 0 otherwise, anduxi2yj u is the distance betwee
xi andyj . The sum is taken only for thosei ’s and j ’s that are
separated in time by more thanB samples to avoid artifac
tural correlations@16#, thusN85N2d2B. Notice that quan-
tities ~2! and~3! are defined for two finite discrete probabi
ity distributionspi and p̂i only if pi.0, and p̂i.0, and if
there is a one-to-one correspondence between the elemei
@9#. In order to satisfy these requirements, we perform
summation in the BC approach@Eqs.~2! and ~3!# only over
the boxesi that contain points from bothX and Y ~i.e., pi

.0 and p̂i.0). In the sphere counting~SC! scheme@Eqs.
~4! and~5!#, we include in the summation overj only spheres
that contain points both inX and Y, and for this reason,M
decreases with«. In our numerical examples we shall es
mateDq using these two methods.

As our first example, we take the trajectory of 10 0
points of the He´non modelxn11512axn

21bxn21, with pa-
rametersa51.4 andb50.3; cf. Kantz@5#. SetX corresponds
to the clean attractor, while setY consists of the same set o
points plus an additive Gaussian noise. In Fig. 1 we pres
the mean value ofD1 versus « computed with the BC
method. We computed the mean value over five realizati
of Y with signal-to-noise ratioh520 dB@17#. Of course, the
q-divergence depends on the length scale«. By choosing a
relatively small«, Dq will pick up local differences between
X andY. However, taking« too small leads to poor statistics
For large«, we lose the small scale structure of the attract
so that they become indistinguishable. We can see thatD1
reaches a maximum at a value of« that will be denoted by
«0. The dashed curve corresponds toS5^D1&/s(D1), where
^ & denotes the mean value over five realizations ands de-
notes the standard deviation. We can see that the maxim
value ofD1 presents very good statistics.

In Fig. 2 we display theq dependence ofDq(«0) for
different noise levels (h530 dB, solid line; h520 dB,
dashed line; andh510 dB, dotted line!. The divergence of

FIG. 1. Solid line:D1(«) for the TSX generated by the He´non
system and the TSY generated by the same system contamina
with noise (h520 dB), computed with the BC scheme usingN
510 000 points andd52 ~left axis!. Dashed line: the statisticS(«)
~right axis!.
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the two attractors increases withq, which could be inter-
preted as a gain control parameter. This fact can be use
detect small divergence, as we will discuss in the last
ample. In Fig. 3 we illustrate the behavior of the mean va
of D2 versus« computed with the SC method. We comput
the mean value over five realizations ofY for each level of
noise. We can see thatD2 presents a maximum at«0 that
depends on the characteristic length scale at which the at
tors differ. In particular in Fig. 1,«0'0.01 and the variance
of the noise is the one-hundredth of the attractor. The« de-
pendence ofDq characterizes the relationship betweenX and
Y. In Fig. 4 we displayD2(«0) versush. This figure shows
that D2(«0) scales exponentially with the level of nois
added to the signal. Thus, in the comparison of a clean a
noisy time series, the physical interpretation of«0 is closely
related to the level of added noise.

FIG. 2. Dq(«0) between the TSX generated by the He´non sys-
tem and the TSY generated by the same system contaminated w
several level of noise as a function of the parameterq ~solid line, 30
dB of SNR; dashed line, 20 dB of SNR; and dotted line, 10 dB
SNR!. The calculations were performed with the BC scheme us
N510 000 points andd52.

FIG. 3. DivergenceD2(«) between the He´non system and itsel
contaminated with several levels of noise~a, h530 dB; b, h
527 dB; c, h520 dB; d, h517 dB; e, h510 dB; and f, h
57 dB). The calculations were performed with the SC sche
usingN510 000 points,B520, andd52.
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Finally, let us show how theq-divergenceDq can be used
to detect nonstationarity events in a TS. As a numerical
ample, let us consider a generalized baker map defined

vn<a: un115bun , vn115vn /a,

vn.a: un1150.51bun , vn115
vn2a

12a
.

For this map, the parameterb can be varied without chang
ing the positive Lyapunov exponent. We generate a non
tionary TS of length 8192 points witha50.4 and two values
of b. In the first 4096 iterations we useb50.6, and in the
second 4096 iterations we setb50.8. We recordu1v, then
we subtract the mean value and normalize to unit varia
separately each one of the two parts; cf. Schreiber@3#. The
total signal of 8192 points was divided in several segme
Si with 1000 points~there are an overlap of 900 points b
tween two consecutive segments!. Thus, we have a nonsta
tionary event in the middle of the TS that is very hard
detect, because observables like mean, variance, and m
mal Lyapunov exponent are constant by construction. Fig

h

f
g

e

FIG. 4. DivergenceD2(«0) between He´non system and itself
contaminated with noise as a function of the level of noiseh.

FIG. 5. D6 ~solid line! andD2 ~dashed line! between two non-
overlapping subsequent segments of TS with a nonstationary e
at 4096.
2-3
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5 showsD2(Si :Sj ) andD6(Si :Sj ), between the two neares
nonoverlapping segmentsSi and Sj ( j 5 i 110). This ex-
ample shows also that the parameterq plays a role of a
nonlinear gain parameter. We can see that forq56 the di-
vergence was able to detect precisely when the small cha
in b occur, while forq52 we have a poor discriminatio
power. We used resolution«50.1155 in the computation. W
have a window resolution with similar results for« in
@0.075,0.15#.

We want to mention that, as any other methods,
q-divergence sensitively depends on any translation or r
tion of the same data set with respect to the other. Howe
Dq remains invariant when the same transformation is
plied over both data sets.
a
,
,

i-

f
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We have introduced theq-divergence as a measure of di
similarity of two finite sets. Comparing clean and noisy a
tractors, theq-divergence has a characteristic length scale
a clear correspondence with the level of noise. Furtherm
the q-divergence decreases exponentially whenh increases.
Also this tool promises to be useful for detecting a nons
tionary event in a TS, even in very hard conditions. Thus
will be seen that some interesting physical insight is gain
by recourse to this type of dissimilarity measure.
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