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Divergence measure between chaotic attractors
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We propose a measure of divergence of probability distributions for quantifying the dissimilarity of two
chaotic attractors. This measure is defined in terms of a generalized entropy. We illustrate our procedure by
considering the effect of additive noise in the well knowimkie attractor. Finally, we show how our approach
allows one to detect nonstationary events in a time series.
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Through the appropriate embedding procedures, strangemong other applications. For the above-mentioned purposes
attractors can be numerically approximated by a large set ofle need a reliable way of comparing attractors rather than
points, either from experimental time seri€ES) or from  their detailed characterization. In this Rapid Communication,
numerical simulation of chaotic systems. Advances in nonwe propose a divergence measure based on a generalized
linear analysis of TS have made it possible to identify andentropy function for quantifying the similarity of attractors.
classify chaotic dynamical systems, determine if a signal igf he procedure introduced here takes advantage of coarse-
deterministic or not, and establish correlations where the tradrained information without losing sensibility to high-order
ditional linear analyses were not sensitigee Ref[1] for a correlations in the data. We re_mark that it ma_lkes it possible
review). However, there are many situations where we do nof® COmpare attractors, even in some situations where the
need a complete characterization of an attractor, but rather §ré commonly used nonlinear measures are not comput-

guantitative way of comparing attractors. For instance, re3PIe:

cently several authors have proposed using some measuresFrq[m. tthe :cn;‘rc])rmatmt))n t}hl.?org. \tllng$0|ntbthe amognt of
of dissimilarity of attractors to analyze nonstationary signals?ncgr.am yo e; pro i Y 'E & Eu]lo(P )'7 pi_l’_h's e
[2,3] and for TS classificatiof4]. In some situations it could '€¢ IN & general way Wilpil=—Z2if[pi] [7]. There is

be important to quantify the difference of two attractors cor-"t @ unique information measuké; . The more commonly

responding to slightly different parameters of a chaotic dy_used information measure or entropy function was intro-

namical system. The computation of the hierarchy of generduced by Shannon and Weay8, wheref(p) = p In p. Gen-
alized dimensions does not help, because even if affralized entropyfy has been postulated by Rg [9] and

dimensions of two fractal sets are equal, this does not guaffavrda and Cha;ya[lO].h_Renyl’ﬁ gefnerahzecli_ entropy has
antee that the two fractal objects are identical. Furthermor?€€n_used to define a hierarchy of generalized dimensions

Pi

p.
' +pif 0

for a reliable estimation of nonlinear dynamical measure ll]i 'I;sallis introduced th_e Harl]vrda-c(tjhat\mtropy fuhnction
used to characterize chaotic dynamical systems, large qualf2 /aborate anonextensive thermo ynarﬁl@. We have a
tities of precise data are necessary to achieve accurate déivergence measur®;(p:p) associated with an entropy
scription of the small scale structure in different regions offunctionf, between two POp; andp; . A general divergence
the attractor and these structures are easily damaged Inyeasure form associated to tHieentropy was given by
noise. Csisza [13],

In order to give a quantitative answer to these issues, a
number of dissimilarity measures have been proposed in the A -
literature. KantZ5] introduced a cross-correlatidi€C) in- Df(p.p)=2i pif ' @
tegral to evaluate the similarity of attractors. He found that
for small scales the decay rate of the CC is greater than thgheref is a convex function and one imposes the condition
decay rate of the autocorrelati¢AC). Alternatively, Albano f(1)=0, which guaranteeB(p:p)=0. Rayi’s generalized
etal. [6] use the Kolmogorov-Smirnov test for comparing entropy does not satisfy convexity. Fortunately, Havrda-
quantitatively two sets of AC integrals. More recently, Charva entropy function fulfills this property. For this rea-
Schreibef 3] proposed that the nonlinear cross-prediction erson we will work here with the Havrda-Chatvantropy
ror can be used for measuring the similarity of short sefynction. From here on we shall refer to the generalized di-
quences. ] vergence measure associated with the Havrda-Chawa

The quantitative comparison of attractors can be relevangopy function, simply as the-divergence, and will be de-
in many different problems, such as numerical taxonomy Ohoted byD,,. If we replacef by the function corresponding
TS, to establish a criterion for stationarity, to study the nu-g the Shannon entropy, we obtain the well known Kullback-
merical convergence of chaotic solutions, to evaluate the efgjpler distancd 14]
fect of nonlinear noise reduction of noisy chaotic attractors,
Pi ) . @)
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Dl(p:f))=§i) piIn
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The functionf corresponding to the Havrda-Chatentropy tyr 1 1 T 1
is given by fq(p)=(q—1)"*(p%—p). Then, the associated
g-divergence is given by

Dy(p:p)=(q—1)"* 2 pp} ‘*+2 pipi -2
3) o

It is easy to show thaD (p:p)—D(p:p) wheng—1. The
g-divergence measure is positive definite, has been made

symmetric, and fulfillsD 4(p:p)=0. Also Dq(p:f)) consid-

ered as a function gf; andp; is convex. We remark thd,
is semimetric, since it may not satisfy the triangular inequal-
ity.

After these definitions, let us consider the divergence be-
tween two finite time series embedded R® X
=(Xg, - - - Xn) @and Y=(Yg, ... yn). There are two well FIG. 1. Solid line:D4(¢) for the TSX generated by the Hen
known ways of estimating quantiti€®) and(3) from X and  system and the TS generated by the same system contaminated
Y. The most straightforward, but also more expensive, is tavith noise (=20 dB), computed with the BC scheme usiNg
use a box countingBC) approach that counts the number of =10 000 points and = 2 (left axis). Dashed line: the statisti8(e)
pointsn; in the boxi. The probabilities; can be estimated (right axis.
asp;=n;/N. On the other hand, a more efficient method of
estimating Egs(2) and (3) is by correlation sum$l5]. In-  where®(x) is the step function which has the value Ixif
stead of taking a fixed mesh, one can calculate the probabil=0 and is 0 otherwise, and;—y;] is the distance between
ity P(x;,&) of finding a point within a sphere of radius  x; andy;. The sum is taken only for thos& andj’s that are

1E3 3

centered ak; , with j= ..M randomly chosen from the separated in time by more thdhsamples to avoid artifac-
trajectoryX. P(Xj €) is estimated by counting the numbgr  tural correlation$16], thusN’=N—d—B. Notice that quan-
of points falling in the sphere of radius centered ak; , tities (2) and (3) are defined for two finite discrete probabil-
N ity distributionsp; and E)i only if p;>0, and f)i>0, and if
P(x;,e)= N O(e— Ixi—x]) j=1,... M. there is a one-to-one correspondence between the elements
i=1 [9]. In order to satisfy these requirements, we perform the

summation in the BC approad¢Egs. (2) and(3)] only over
the boxesi that contain points from botX and Y (i.e., p;

N’ >0 andp;>0). In the sphere countingSC) scheme[Egs.
M E O(e—lyi—x|) (4) and(5)], we include in the summation oveonly spheres
1 that contain points both iX andY, and for this reasony
Dy(p:p,e)=M" Eln 7 o : : _
ecreases witlz. In our numerical examples we shall esti-
E ®(s—|xi—x,~|) mateD using these two methods.
=1 As our first example, we take the trajectory of 10000
N’ points of the Haon modelx, ;=1—ax +bxn 1, With pa-
" z A(s—|x -y rametersa=1.4 andb=0.3; cf. Kantz[_S] SetX corresponds
S n i=1 @ to .the clean attractor, while sé{tcons[sts of thg same set of
= N ' points plus an additive Gaussian noise. In Fig. 1 we present
z ®(8—|yi—yj|) the mean value oD, versuse computed with the BC
=1 method. We computed the mean value over five realizations
of Y with signal-to-noise ratiog=20 dB[17]. Of course, the
g-divergence depends on the length scaldBy choosing a
M Mol O(e—[yi—x]) relatively smalle, D will pick up local differences between
Dy(p: p.e)= (—1) E T XandY. However, takings too small leads to poor statistics.
q For largee, we lose the small scale structure of the attractors
2, O(e—|xi—xl) so that they become indistinguishable. We can see Dhat
reaches a maximum at a value othat will be denoted by
N’ a £g. The dashed curve correspondsste(D,)/o(D), where
M E O(e—|x—yjl) (') denotes the mean value over five realizations ande-
+> 1 —2M |, notes the standard deviation. We can see that the maximum
' N value of D, presents very good statistics.
> O(e—lyi-y) In Fig. 2 we display theq dependence oD (eo) for
different noise levels =30 dB, solid line; =20 dB,
(5) dashed line; andy=10 dB, dotted ling The divergence of

Using this definition, expressiori) and(3) are replaced by
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FIG. 2. D4(&o) between the TX generated by the Hi®n sys- . . .
tem and the TS generated by the same system contaminated with FIG'_ 4. Dlve_rgenc_eDz(so) betw_een Heon system aqd itself
several level of noise as a function of the paramat@olid line, 30~ contaminated with noise as a function of the level of nojse
dB of SNR; dashed line, 20 dB of SNR; and dotted line, 10 dB of
SNR). The calculations were performed with the BC scheme using Finally, let us show how the-divergenceD, can be used
N= 10000 points and=2. to detect nonstationarity events in a TS. As a numerical ex-

ample, let us consider a generalized baker map defined by

the two attractors increases with which could be inter-
preted as a gain control parameter. This fact can be used to
detect small divergence, as we will discuss in the last ex-
ample. In Fig. 3 we iIIustrafce the behavior of the mean value va>al Uy, =0.5+Au,, Unﬂzvn_“_

of D, versuse computed with the SC method. We computed l1-a

the mean value over five realizations ffor each level of

noise. We can see th&l, presents a maximum af, that  For this map, the paramet@r can be varied without chang-
depends on the characteristic length scale at which the attraittg the positive Lyapunov exponent. We generate a nonsta-
tors differ. In particular in Fig. 1¢,~0.01 and the variance tionary TS of length 8192 points with=0.4 and two values

of the noise is the one-hundredth of the attractor. Fhge-  of 8. In the first 4096 iterations we uge=0.6, and in the
pendence oD, characterizes the relationship betweeand ~ second 4096 iterations we s@t=0.8. We recordi+v, then

Y. In Fig. 4 we displayD,(e,) versusy. This figure shows We subtract the mean value and normalize to unit variance
that D,(e,) scales exponentially with the level of noise Separately each one of the two parts; cf. SchrefBgrThe
added to the signal. Thus, in the comparison of a clean andQt@! signal of 8192 points was divided in several segments

noisy time series, the physical interpretationegfis closely ~ i With 1000 points(there are an overlap of 900 points be-
related to the level of added noise. tween two consecutive segment$hus, we have a nonsta-

tionary event in the middle of the TS that is very hard to
detect, because observables like mean, variance, and maxi-
mal Lyapunov exponent are constant by construction. Figure

vpSal Upe1=BUy,  Upy1=vnla,
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FIG. 3. Divergencé®,(&) between the Heon system and itself n
contaminated with several levels of noi¢a, =30 dB; b, »
=27 dB; c, »=20 dB; d, =17 dB; e, =10 dB; and f, » FIG. 5. Dg (solid line) andD, (dashed ling between two non-
=7 dB). The calculations were performed with the SC schemeoverlapping subsequent segments of TS with a nonstationary event
usingN=10 000 pointsB=20, andd=2. at 4096.
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5 showsD,(S;:Sj) andDg(S :S)), between the two nearest ~ We have introduced thg-divergence as a measure of dis-
nonoverlapping segment§; and S; (j=i+10). This ex-  similarity of two finite sets. Comparing clean and noisy at-
ample shows also that the parametgplays a role of a tractors, theg-divergence has a characteristic length scale in
nonlinear gain parameter. We can see thatofer6 the di-  a clear correspondence with the level of noise. Furthermore,
vergence was able to detect precisely when the small changRe g-divergence decreases exponentially wheincreases.

in B occur, while forq=2 we have a poor discrimination A|so this tool promises to be useful for detecting a nonsta-
power. We used resolutian=0.1155 in the computation. We  tionary event in a TS, even in very hard conditions. Thus, it
have a window resolution with similar results fer in || pe seen that some interesting physical insight is gained

[0.075,0.13. ) by recourse to this type of dissimilarity measure.
We want to mention that, as any other methods, the

g-divergence sensitively depends on any translation or rota- The author acknowledges the financial support of
tion of the same data set with respect to the other. HoweveEAPESP Grant No. 99/07186-3. The author thanks C.P.
D, remains invariant when the same transformation is apMalta for a careful reading of the manuscript and her useful

plied over both data sets. comments.
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